

Bi System

Smart Automation and Control

DIGITAL

- 32 bit dual-core Xtensa LX7
- 1 Porta RS485 con protocollo Modbus
- 30 ingressi digitali
- Ingressi preposti per contatti puliti da tensione
- Alimentazione a 12 Vcc
- Connettori a vite estraibili
- Contenitore in ABS per serie civile:

- Reti di automazione
- Controllo dei processi
- Smart hotel
- Smart office
- Smart factory
- Automazione impianti nei settori civile, industriale, residenziale, terziario e applicazioni IoT

Il modulo **BiZN-30D2-MOD** è un controllore di rete compatto per montaggio su barra din con 30 ingressi digitali preposti per ricevere contatti puliti da tensione quali: interruttori, pulsanti, fine-corsa, relè, ecc; ogni ingresso è protetto da sovratensioni transitorie.

Dispone sul lato superiore di una porta RS485 per la gestione delle periferiche esterne con protocollo di comunicazione Modbus RTU.

È alimentato a 12 Vcc, e viene fornito in contenitore plastico modulare di colore grigio RAL 7035, autoestinguente UL94-VO, e agganciabile su guida DIN (EN60715) secondo le norme DIN 43880; la dimensione è di 8 moduli. Tutte le connessioni avvengono per mezzo di serraggio a vite su connettori estraibili per conduttori fino a 2,5 mm². Il vano morsettiera contiene anche il jumper per l'inserzione dell'impedenza di inizio/fine linea e il LED di servizio.

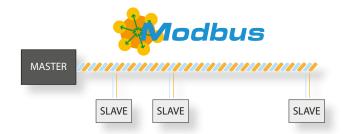
APPLICAZIONI

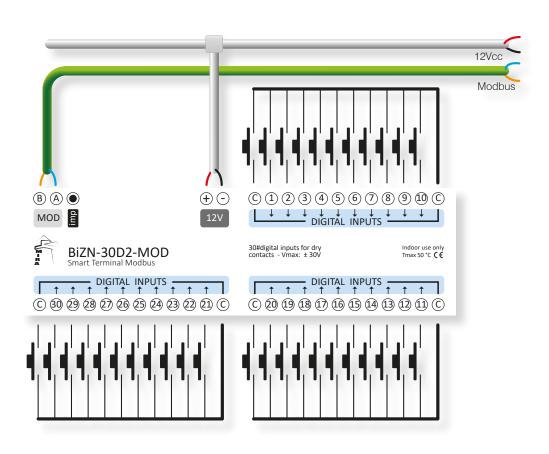
DESCRIZIONE

Symbol	Parameter	Min	Тур	Max	Unit
Power Supp	olier				
Vs	Supply Voltage	11,2	12	13,8	Vdc
Is	Supply Current (@12Vdc)	55		155	mA
Baud rate					
	Type RS485 / Protocol Modbus RTU			115,200	Kbps
Inputs termi	inal for dry contacts			100	A
Vdi	Protection by resetable Fuse Open Contact Voltage	3,3	3,8	100 4,0	mA Vdc
ldi	Closed Contact Current	3,5	5,0	0,1	mAdd
	Cloude Carrein			J 5, .	112 1010

BiZN-30D2-MOD

Smart terminal module


I prodotti della famiglia BiRO-xxxx-MOD e BiZN-xxxx-MOD comunicano per mezzo di una porta RS485 e con protocollo Modbus RTU. I terminali della serie BiRO si differenziano dalla serie BiZN per la presenza di numerosi algoritmi preposti alla gestione della hotel smart room.


Il Modbus RTU (Remote Terminal Unit) è un protocollo di comunicazione molto utilizzato per lo scambio dati tra dispositivi come PLC, sensori e attuatori. Ha una struttura di tipo "Master-Slave" dove il "master" gestisce la comunicazione interrogando uno o più "slave"; gli slave rispondono solo quando interrogati. Utilizza un formato binario per il trasferimento dei dati che lo rende veloce e adatto a reti con larghezza di banda limitata, ed è noto per la sua affidabilità, anche in ambienti con interferenze elettromagnetiche.

La comunicazione avviene per mezzo di uno scambio di telegrammi tra il "Master" e lo "Slave", il primo per ordinare il tipo di operazione richiesta, il secondo per confermare l'avvenuta esecuzione dell'operazione.

Il telegramma del "Master" contiene un numero ID, una funzione e un certo numero di dati a seconda della richiesta; il tutto si chiude con un byte di controllo per la verifica dei dati trasmessi. L'ID è unico per l'intero impianto, e il codice della funzione determina il tipo di operazione che il "master" richiede dallo "slave":

Funz	Descrizione
01	Leggi lo stato delle uscite digitali
02	Leggi lo stato degli ingressi digitali
03	Leggi i valori dei registri in memoria
04	Leggi i valori degli ingressi analogici
05	Accendi/Spegni un'uscita digitale
06	Scrivi un valore su un registro di memoria
15	Accendi/Spegni più uscite digitali
16	Scrivi più valori su altrettanti registri di memoria

